If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+13p+8=0
a = 5; b = 13; c = +8;
Δ = b2-4ac
Δ = 132-4·5·8
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*5}=\frac{-16}{10} =-1+3/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*5}=\frac{-10}{10} =-1 $
| 2x+4x+3.3=78 | | P=40+t*3 | | 3) 59x+(3x–27)=4x+(13-2x) | | 59x+(3x–27)=4x+(13-2x) | | 5x–(15–4x)=3 | | 5x–(15–4x)=3 | | 6x+1=2x-11 | | 2x(x-1)=10 | | 7x+(16+3x)=21 | | -(x➗3)=-8-10x | | 3xx+2=14 | | -(x~3)=-8-10x | | 2x+4x+14=78 | | 2x+4x+14=157 | | 2x+4x+12=78 | | -62=5(3x-2)-2(6-5x) | | 3*(x+2)=2x+3 | | P(x)=0.20 | | p(0.36)=64 | | -4w-4=24 | | 3u−-2=8 | | 7+2x=-3(1-x) | | 84.45+g/2=85 | | 5(6+2)-15=x+7 | | x-10/3=3x+5/4 | | x=-2,27/3,6 | | 12560=0.25(x-14,600)+1460 | | (6y-6)=42 | | 36÷N=13-n | | (7x-19)+(9x-37)=90 | | 3x−4=6x+8 | | 3x−4=6x+ |